Monday, April 20, 2009

Thermal conductivity

Unlike most electrical insulators, diamond is a good conductor of heat because of the strong covalent bonding within the crystal. Most natural blue diamonds contain boron atoms which replace carbon atoms in the crystal matrix, and also have high thermal conductance. Monocrystalline synthetic diamond enriched in 12C isotope (99.9%) has the highest thermal conductivity of any known solid at room temperature: >30 W/cm·K [16] five times more than copper. Because diamond has such high thermal conductance it is already used in semiconductor manufacture to prevent silicon and other semiconducting materials from overheating. At lower temperatures conductivity becomes even better as its Fermi electrons can match the phononic normal transport mode near the Debye point,[17] and transport heat more swiftly, to reach ~800 W/cm·K at 100 K (12C enriched diamond)[16]

Diamond's thermal conductivity is made use of by jewelers and gemologists who may employ an electronic thermal probe to separate diamonds from their imitations. These probes consist of a pair of battery-powered thermistors mounted in a fine copper tip. One thermistor functions as a heating device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. This test takes about 2–3 seconds. However, older probes will be fooled by moissanite, a crystalline mineral form of silicon carbide introduced in 1998 as an alternative to diamonds, which has a similar thermal conductivity.

No comments:

Post a Comment